
38 CIRCUIT CELLAR® • www.circuitcellar.com

Ja
nu

ar
y

20
10

 –
 I

ss
ue

 2
34

igure 1—This is a USB CRC5 implementation as LFSR using generator polynomial

G(x) = x5 + x2 + 1.

Data

Figure 2—This is a parallel CRC block. The next state CRC output is

a function of the current state CRC and the data.

M-bit CRC
Next state

M-bit CRC
OutputParallel

CRC
Generator

M-bit Data
input

Do you understand the mechanics of the cyclic redundancy check (CRC) well

enough to build a customized parallel CRC circuit described by an arbitrary

CRC generator polynomial? This article covers a practical method of generating

Verilog or VHDL code for the parallel CRC. The result is the fast generation of

a parallel CRC code for an arbitrary polynomial and data width.

A Practical Parallel CRC

Generation Method

M

F
EA
TU
R
E

ARTICLE by Evgeni Stavinov

ost electrical and computer

engineers are familiar with the

cyclic redundancy check (CRC). Many

know that it’s used in communication

protocols to detect bit errors, and that it’s

essentially a remainder of the modulo-2

long division operation. Some have had

closer encounters with the CRC and

know that it’s implemented as a linear

feedback shift register (LFSR) using flip-flops and XOR

gates. They likely used an online tool or an existing

example to generate parallel CRC code for a design. But

very few engineers understand the mechanics of the

CRC well enough to build a customized parallel CRC

circuit described by an arbitrary CRC generator polyno-

mial. What about you?

In this article, I’ll present a practical method for gen-

erating Verilog or VHDL code for the parallel CRC. This

method allows for the fast generation of a parallel CRC

code for an arbitrary polynomial and data width. I’ll also

briefly describe other interesting methods and provide

more information on the subject.

So why am I covering parallel CRC? There are several

existing tools that can generate the code, and a lot of

examples for popular CRC polynomials. However, it’s

often beneficial to understand the underlying principles

in order to implement a customized circuit or make

optimizations to an existing one. This is a subject every

practicing logic design engineer should understand.

CRC OVERVIEW
Every modern communication protocol uses one or

more error-detection algorithms. CRC is by far the most

popular. CRC properties are defined by the generator poly-

nomial length and coefficients. The protocol specification

usually defines CRC in hex or polynomial notation. For

Figure 1—This is a USB CRC5 implementation as LFSR using generator polynomial

G(x) = x5 + x2 + 1.

example, CRC5 used in USB protocol is represented as

0x5 in hex notation or as G(x) = x5 + x2 + 1 in the poly-

nomial notation:

This CRC is typically implemented in hardware as a lin-

ear feedback shift register (LFSR) with a serial data input

(see Figure 1).

In many cases the serial LFSR implementation of the

CRC is suboptimal for a given design. Because of the

serial data input, it only allows the CRC calculation of

one data bit every clock. If a design has an N-bit data-

path—meaning that every clock CRC module has to calcu-

late CRC on N bits of data—serial CRC will not work. One

example is USB 2.0, which transmits data at 480 MHz on

Hex notation 0x5 polynomial notation G x = x + x + 15 2

the physical level. A typical USB PHY chip has an 8- or

16-bit data interface to the chip that does protocol pro-

cessing. A circuit that checks or generates CRC has to

work at that speed.

Another more esoteric application I’ve encountered has

to do with calculating 64-bit CRC on data written and

read from a 288-bit-wide memory controller (two 64-bit

DDR DIMMs with ECC bits). To achieve higher

throughput, the CRC’s serial LFSR implementation must

be converted into a parallel N-bit-wide circuit, where N

is the design datapath width, so that N bits are

processed in every clock. This is a parallel CRC imple-

mentation, which is the subject of this article. Figure 2

is a simplified block diagram of the parallel CRC.

Even though the CRC was invented almost half a cen-

tury ago and has gained

widespread use, it still

sparks a lot of interest

in the research commu-

nity. There is a con-

stant stream of research

papers and patents that

offer different parallel

CRC implementation

with speed and logic

area improvements. I

was searching available

literature and web

resources about parallel

CRC calculation meth-

ods for hardware

description languages

(HDL) and found a

handful of papers.

(Refer to the Resources

section at the end of

this article.) However,

most were academic

and focused on the the-

oretical aspect of the

parallel CRC genera-

tion. They were too

impractical to imple-

ment in software or

hardware for a quick

HDL code generation of

CRC with arbitrary

data and polynomial

widths.

An additional

requirement for the

method is that the par-

allel CRC generator

must be able to accept

any data width (not

only power-of-2) to be

useful. Going back to

the USB 2.0 CRC5

www.circuitcellar.com • CIRCUIT CELLAR® 39

Ja
nu

ar
y

20
10

 –
 I

ss
ue

 2
34

Listing 1—This Verilog module implements parallel USB CRC5 with 4-bit data.

//==
// Verilog module that implements parallel USB CRC5 with 4-bit data
//==
module crc5_parallel(

input [3:0] data_in,
output reg[4:0] crc5,
input rst,

input clk);

// LFSR for USB CRC5
function [4:0] crc5_serial;

input [4:0] crc;
input data;

begin
crc5_serial[0] = crc[4] ^ data;
crc5_serial[1] = crc[0];
crc5_serial[2] = crc[1] ^ crc[4] ^ data;
crc5_serial[3] = crc[2];
crc5_serial[4] = crc[3];

end
endfunction

// 4 iterations of USB CRC5 LFSR
function [4:0] crc_iteration;

input [4:0] crc;
input [3:0] data;
integer i;

begin
crc_iteration = crc;

for(i=0; i<4; i=i+1)
crc_iteration = crc5_serial(crc_iteration, data[3-i]);

end
endfunction

always @(posedge clk, posedge rst) begin
I f(rst) begin

crc5 <= 5'h1F;
end
else begin

crc5 <= crc_iteration(crc5,data_in);
end

end
endmodule
//==

42 CIRCUIT CELLAR® • www.circuitcellar.com

Ja
nu

ar
y

20
10

 –
 I

ss
ue

 2
34

example, a convenient data width to

use for the parallel CRC of polyno-

mial width 5 is 11 because USB

packets using CRC5 are 16 bits.

Another example is the 16-lane PCI

Express with a 128-bit datapath (16

8-bit symbols). Because the begin-

ning of a packet is a K-code symbol

and doesn’t participate in the CRC

calculation, the parallel CRC data is

120 bits wide.

Before going any further into the

topic of parallel CRC, I’ll briefly

review modulo-2 polynomial arith-

metic. A polynomial is a value

expressed in the following form:

where p(i) = {0,1}.

Polynomial addition and subtrac-

tion operations use bitwise XOR.

Here is an example:

Polynomial multiplication by two

P x
Q x
P x

 = x + x + 1
 = x + x + 1
 + Q x = x + x +

3 2

2

3 2 x

P x P i x x xi
i
N N = = p 0 + p 1 + ... + p N 0

is a left shift, and unsigned division by

two is the right shift. Modulo-2 poly-

nomial division is realized the same

way as long division over integers.

Cyclic left and right shifts are multipli-

cation and division by (2 mod 2n – 1).

0!2!,,%,฀#2#฀'%.%2!4)/.
I’ll start the discussion with a Ver-

ilog module that generates parallel USB

CRC5 with 4-bit data (see Listing 1).

A synthesis tool will do its magic

and produce a circuit depending on

the target FPGA or ASIC technology.

However, the purpose of this article

is to explain how to get a parallel

CRC circuit using XOR gates and

flip-flops.

Next I’ll describe a practical

method that I use to generate parallel

CRC in a number of projects. It works

on any polynomial and data size,

independent of the target technolo-

gy. Later I’ll present other methods

that have some useful properties.

The step-by-step description is

accompanied by an example of parallel

CRC generation for the USB CRC5

polynomial G(x) = x5 + x2 + 1 with 4-

Listing 2—This Verilog function implements the serial USB CRC5.

//===
// Verilog function that implements serial USB CRC5
//===

function [4:0] crc5_serial;
input [4:0] crc;

input data;

begin
crc5_serial[0] = crc[4] ^ data;
crc5_serial[1] = crc[0];
crc5_serial[2] = crc[1] ^ crc[4] ^ data;
crc5_serial[3] = crc[2];
crc5_serial[4] = crc[3];

end
endfunction

//==

Listing 3—This pseudocode is an example of CRC
PARALLEL

.

//===

routine CRC
parallel

(N
in
, M

in
)

M
out =

M
in

for(i=0;i<N;i++)
M
out

= CRC
serial

(N
in

, M
out
)

return M
out

//===

Circuit Cellar design contest

entrants have received

thousands of valuable

development tools and

product samples. Because of

their contest participation,

these engineers receive

advance e­mail notice from

Circuit Cellar as soon as new

samples become available.

Now you too can benefit from

this early notification. @
Designer's Notification Network

Welcome to the Designer's Notification Network. Print subscribers are invited to

join the Network for advance notice about our new sample distribution programs.

www.circuitcellar.com • CIRCUIT CELLAR® 43

Ja
nu

ar
y

20
10

 –
 I

ss
ue

 2
34

bit data width. The method—which takes advantage of

the theory described in a paper by Guiseppe Campobello

et al titled “Parallel CRC Realization,” as well as in a

paper by G. Albertango and R. Sisto titled “Parallel CRC

Generation”—leverages a simple serial CRC generator

and the linear properties of the CRC to build a parallel

CRC circuit.

In Step 1, denote N = data width and M = CRC polyno-

mial width. For parallel USB CRC5 with a 4-bit data-

path, N = 4 and M = 5.

In Step 2, implement a serial CRC generator routine

for a given polynomial. It’s a straightforward process and

can be done using different programming languages or

scripts (e.g., C, Java, Verilog, or Perl). You can use the

Verilog function crc5_serial in Listing 2 for the serial

USB CRC5. Denote this routine as CRC
SERIAL

. You can

also build a routine CRCparallel(Nin, Min) that sim-

ply calls CRC
SERIAL

N times (the number of data bits) and

returns M
OUT

. The pseudocode in Listing 3 is an example

of CRC
PARALLEL

.

In Step 3, parallel CRC implementation is a function

of N-bit data input and M-bit current CRC state, as

shown in the Figure 2. We’re going to build two matri-

ces. Matrix H1 describes M
OUT

(next CRC state) as a

function of N
IN

(input data) when M
IN

= 0. Thus, M
OUT

=

CRC
PARALLEL

(N
IN

, M
IN

= 0), and H1 matrix is the size

[NxM]. Matrix H2 describes M
OUT

(next CRC state) as a

function of M
IN

(current CRC state) when N
IN

= 0. Thus,

M
OUT

= CRC
PARALLEL

(N
IN

= 0, M
IN

), and H2 matrix is the

size [MxM].

In Step 4, build the matrix H1. Using the CRC
PARALLEL

routine from step 2, calculate the CRC for the N values

of N
IN

when M
IN

= 0. The values are one-hot encoded—

that is, each of the N
IN

values has only one bit set. For N

= 4, the values are 0x1, 0x2, 0x4, 0x8 in hex representa-

tion. Table 1 shows matrix H1 values for USB CRC5

with N = 4.

In Step 5, build the matrix H2. Using the CRC
PARALLEL

routine from Step 2, calculate CRC for the M values of

M
IN

when N
IN

= 0. The values are one-hot encoded. For

M = 5, M
IN

values are 0x1, 0x2, 0x4, 0x8, 0x10 in hex

representation. Table 2 shows the matrix H2 values for

USB CRC5 with N = 4.

In Step 6, you’re ready to construct the parallel CRC

equations. Each set bit j in column i of the matrix H1—

and that’s the critical part of the method—participates

in the parallel CRC equation of the bit M
OUT

[i] as N
IN

[j].

Likewise, each set bit j in column i of the matrix H2

participates in the parallel CRC equation of the bit

M
OUT

[i] as M
IN

[j].

All participating inputs M
IN

[j] and N
IN

[j] that form

M
OUT

[i] are XORed together. For USB CRC5 with N = 4,

the parallel CRC equations are as follows:

M
OUT

is the parallel CRC implementation. I used Table 1

and Table 2 to derive the equations.

The reason this method works is in the way we con-

structed matrices H1 and H2, where rows are linearly

independent. We also used the fact that CRC is a linear

operation:

The resulting Verilog module generates parallel USB

CRC5 with 4-bit data (see Listing 4).

/4(%2฀-%4(/$3฀
There are many other methods for parallel CRC gener-

ation. Each method has advantages and drawbacks. Some

are more suitable for high-speed designs where logic area

is less of an issue. Others offer the most compact

designs, but for lower speed. As with almost everything

else in engineering, you have to make trade-offs to bring

your designs to completion.

Let’s review the most notable methods. One method

derives a recursive formula for parallel CRC directly

from a serial implementation. The idea is to represent an

LFSR for serial CRC as a dis-

crete-time linear system:

Vector X(i) is the current LFSR

output. X(i + 1) is the output in

the next clock. Vector U(i) is

the ith of the input sequence. F

is a matrix chosen according

X i + 1 = FX i + U i

CRC A B + = CRC A + CRC B

M
M

OUT

OUT

0
1

 = M 1 ^ M 4 ^ M 0 ^ M 3
 = M 2

IN IN IN IN

IN ^ N 1
 = M 1 ^ M 3 ^ M 4 ^ N 0 ^ N

IN

IN IN IN INMOUT 2 IIN IN

IN IN IN IN

2 ^ N 3
 = M 2 ^ M 4 ^ N 1 ^ N 3MOUT 3

MMOUT 4 = M 0 ^ M 3 ^ N 2IN IN IN

Table 1—This is the matrix H1 for USB CRC5 with N = 4.

MIN = 0 Mout[4] Mout[3] Mout[2] Mout[1] Mout[0]
Nin[0] 0 0 1 0 1
Nin[1] 0 1 0 1 0
Nin[2] 1 0 1 0 0
Nin[3] 0 1 1 0 1

Table 2—This is the matrix H2 for USB CRC5 with N = 4.

Nin = 0 Mout[4] Mout[3] Mout[2] Mout[1] Mout[0]
Min[0] 1 0 0 0 0
Min[1] 0 0 1 0 1
Min[2] 0 1 0 1 0
Min[3] 1 0 1 0 0
Min[4] 0 1 1 0 1

44 CIRCUIT CELLAR® • www.circuitcellar.com

Ja
nu

ar
y

20
10

 –
 I

ss
ue

 2
34

to the equations of serial

LFSR. For example, USB

CRC5 G(x) = x5 + x2 + 1

will produce Figure 3,

where p(i) are polynomial

coefficients. Addition and

multiplication operations

are bitwise logic XOR and

AND, respectively.

After m clocks, the

state is X(i + m), and the

solution can be obtained

recursively.

m is the desired data width. Each row k of the X(i + m) solu-

tion is a parallel CRC equation of bit k. An important result

of this method is that it establishes a formal proof of solu-

tion existence. It’s not immediately obvious that it’s possi-

ble to derive a parallel CRC circuit from a serial one.

Another method uses two-stage CRC calculation. The

idea is that checking and generating CRC is done not with

generator polynomial G(x), but with another polynomial

M(x) = G(x) P(x). M(x) is chosen so that it has fewer

terms than G(x) to simplify the complexity of the circuit

that realizes the division. The result of the division by

X i + m = F X i + F U i + ... + FX i + m + U i + mm m 1

M(x), which has a fixed length, is divided again by G(x) to

get the CRC.

Calculating the CRC with “byte enable” is another

method that is important in many cases. For example, if

the data width is 16 bits but a packet ends on an 8-bit

boundary, it would require having two separate CRC mod-

ules for 8 and 16 bits. The byte enable method allows for

the reuse of the 16-bit CRC circuit to calculate an 8-bit

CRC.

There is also a DSP unfolding technique to build a par-

allel CRC. The idea is to model an LFSR as a digital filter

and use graph-based unfolding to unroll loops and obtain

the parallel processing.

Other methods include using look-up tables (LUTs) with

precomputed CRC values.

0%2&/2-!.#%฀2%35,43
The logic use and timing performance of a parallel

CRC circuit largely depends on the underlying target

FPGA or ASIC technology, data width, and polynomial

width. For instance, Verilog or VHDL code will be synthe-

sized differently for the Xilinx Virtex5 and Virtex4 FPGA

families because of the differences in the underlying LUT

input sizes. Virtex5 has 6-bit LUTs, whereas the Virtex4

has 4-bit LUTs.

In general, the logic utilization of a parallel CRC cir-

cuit will grow linearly with the

data width. Using the big-O

notation, logic size complexity

is O(n), where n is the data

width. For example, each of the

CRC5’s five output bits is a

function of four data input bits:

CRCout[i] = Function(CRCin4:0],

Data[3:0])

Doubling the data width to 8

bits doubles the number of par-

ticipating data bits in each

CRC5 bit equation. That will

make the total CRC circuit size

up to 10 times bigger (i.e., 5 2).

Of course, not all bits will dou-

ble—that depends on the poly-

nomial. But the point is that the

circuit size will grow linearly.

Logic utilization will grow as

a second power of the polynomi-

al width, or O(n2). Doubling the

polynomial width in CRC5 from 5

to 10—let’s call it CRC10, which

has different properties—doubles

the size of each CRC10 output

bit. The number of CRC outputs

is also doubled, so the total size

increase is up to 4 times (i.e., 22).

The circuit’s timing performance

Listing 4—This is a Verilog module that implements parallel USB CRC5 with 4-bit

data using XOR gates.

//===
// Verilog module that implements parallel USB CRC5 with 4-bit
// data using XOR gates
//===
module crc5_4bit(
input [3:0] data_in,
output [4:0] crc_out,
input rst,
input clk);

reg [4:0] lfsr_q,lfsr_c;
assign crc_out = lfsr_q;

always @(*) begin
lfsr_c[0] = lfsr_q[1] ^ lfsr_q[4] ^ data_in[0] ^ data_in[3];
lfsr_c[1] = lfsr_q[2] ^ data_in[1];
lfsr_c[2] = lfsr_q[1] ^ lfsr_q[3] ^ lfsr_q[4] ^ data_in[0] ^

data_in[2] ^ data_in[3];
lfsr_c[3] = lfsr_q[2] ^ lfsr_q[4] ^ data_in[1] ^ data_in[3];
lfsr_c[4] = lfsr_q[0] ^ lfsr_q[3] ^ data_in[2];

end // always

always @(posedge clk, posedge rst) begin
if(rst) begin

lfsr_q <= 5’h1F;
end
else begin

lfsr_q <= lfsr_c;
end

end // always

endmodule // crc5_4
//===

Figure 3—This is matrix F in a for-

mula X(i + 1) = FX(i) + U(i) for

recursive parallel CRC method. The

values are for USB CRC5 polynomial

G(x) = x5 + x2 + 1.

p (4) 1 0 0 0

p (3) 0 1 0 0

p (2) 0 0 1 0

p (1) 0 0 0 1

p (0) 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

0 0 0 0 1

1 0 0 0 0

F = =

www.circuitcellar.com • CIRCUIT CELLAR® 45

Ja
nu

ar
y

20
10

 –
 I

ss
ue

 2
34

2/*%#4฀&),%3
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/

2009/234.

%3/52#%3
G. Albertango and R. Sisto, “Parallel CRC Generation,” IEEE Micro,

Vol. 10, No. 5, 1990.

G. Campobello, G. Patane, M. Russo, “Parallel CRC Realization,”

http://ai.unime.it/~gp/publications/full/tccrc.pdf.

R. J. Glaise, “A Two-Step Computation of Cyclic Redundancy Code

CRC-32 for ATM Networks,” IBM Journal of Research and Develop-

ment, Vol. 41, Issue 6, 1997.

A. Perez, “Byte-wise CRC Calculations,” IEEE Micro, Vol. 3, No. 3,

1983.

A. Simionescu, “CRC Tool: Computing CRC in Parallel for Ethernet,”

Nobug Consulting, http://space.ednchina.com/upload/2008/8/27/5300b83c-

43ea-459b-ad5c-4dc377310024.pdf.

Evgeni Stavinov (evgeni@outputlogic.com) is a system design engineer for Xilinx

who holds an MSEE from USC and a BSEE from The Technion — Israel Institute of

Technology. He has more than 10 years of design experience in the areas of FPGA

logic design, embedded software, and networking. Evgeni worked for CATC, LeCroy,

and SerialTek designing test and measurement tools for USB, Wireless USB, PCI

Express, Bluetooth, SAS, and SATA protocols. He also created OutputLogic.com—a

web portal that offers online tools for FPGA and ASIC designers—and serves as its

main developer.

R

P

0/0฀15):
If you’ve read this article carefully, you should be able to solve the following

problem.

Problem: Consider the polynomial G(x) = x + 1. What well-known error

detection code does this polynomial represent? Derive a parallel equation of

this polynomial for 8-bit data input. Hint: Draw a circuit with serial data input

and think about how the output depends on the number of “1” bits in the

input datastream.

The answer is available on the Circuit Cellar FTP site.

decreases because it requires more

combinational logic levels to synthe-

size CRC output logic given the wider

data and polynomial inputs.

I used free Xilinx WebPACK tools to

simulate and synthesize parallel CRC

circuits for USB CRC5 and the popular

Ethernet CRC32. You can explore the

results in the available Verilog code

and project files.

Xilinx’s Virtex5 LX30 is the target

FPGA. Table 3a shows USB CRC5

with 4-bit data using “for loop” Verilog

implementation. Table 3b shows USB

CRC5 with 4-bit data using “XOR”

Verilog implementation. Table 3c

shows CRC32 with 32-bit data using

“for loop” Verilog implementation.

Table 3d shows CRC32 with 32-bit

data using “XOR” Verilog implementa-

tion. Note that a single Xilinx Virtex5

Slice contains four FFs and four LUTs.

As expected, the number of FFs is

five and 32 for CRC5 and CRC32. For

a small CRC5 circuit, there is no dif-

ference in the logic utilization. Howev-

er, for a larger CRC32, the code using

the XOR method produces more com-

pact logic than the “for loop”

approach.

These synthesis results should be

taken with a grain of salt. The results

are specific to the targeted technology

(ASIC or FPGA family) and synthesis

tool settings.

0!2!,,%,฀'%.%2!4)/.
The parallel CRC generation method

leverages a simple serial CRC generator

and the linear properties of the CRC to

build H1
NxM

and H2
MxM

matrices. Row [i]

of the H1 matrix is the CRC value of N
IN

with a single bit [i] set, while M
IN

= 0.

Row [i] of the H2 matrix is the CRC

value of M
IN

with a single bit [i] set,

while N
IN

= 0. Column [j] of the H1

and H2 matrices contains the polyno-

mial coefficients of the CRC output

bit [j].

I’ve used this method successfully

in several communication and test-

and-measurement projects. An online

parallel CRC generator tool available at

OutputLogic.com uses this method to

produce Verilog or VHDL code given

an arbitrary data and polynomial

width. A similar method is also used to

generate parallel scramblers. Perhaps

I’ll cover the topic in a future article. ฀

Table 3a—Logic utilization for USB CRC5,4-bit

data using the “for loop” method. b—Logic

utilization for USB CRC5, 4-bit data the using

“XOR” method. c—Logic utilization for CRC32,

32-bit data using the “for loop” method.

d—Logic utilization for CRC32, 32-bit data

using the “XOR” method.

a)

Number of LUTs 5

Number of FFs 5

Number of Slices 2

b)

Number of LUTs 5

Number of FFs 5

Number of Slices 2

c)

Number of LUTs 214

Number of FFs 32

Number of Slices 93

d)

Number of LUTs 161

Number of FFs 32

Number of Slices 71

