
 

Copyright © 2011 Evgeni Stavinov 

 

 

 



 

Copyright © 2011 Evgeni Stavinov 

 

 

 

 

 

 



 

   3 

Preface 
 

I have never thought of myself as a book writer. Over the course of my career, I have 

written volumes of technical documentation, published several articles in technical 

magazines, and have done a lot of technical blogging. At some point, I have 

accumulated a wealth of experience and knowledge in the area of FPGA design, and 

thought it was a good time to share it with a broader audience. 

Writing a book takes time, commitment, and discipline. It also requires a very different 

skill set. Unfortunately, many engineers, including myself, are trained to use 

programming languages better than natural languages. Despite all that, writing a book 

is definitely an intellectually rewarding experience. 

I would like to express my gratitude to all the people who have provided valuable ideas, 

reviewed technical contents, and edited the manuscript: my colleagues from SerialTek, 

former colleagues from Xilinx, technical bloggers, and many others. 
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1. Introduction 

Target audience  
 

FPGA logic design has grown from being one of many hardware engineering skills a 

decade ago to a highly specialized field. Nowadays, FPGA logic design is a full time job. 

It requires a broad range of skills, such as a deep knowledge of FPGA design tools, the 

ability to understand FPGA architecture and sound digital logic design practices. It can 

take years of training and experience to master those skills in order to be able to design 

complex FPGA projects.  

This book is intended for electrical engineers and students who want to improve their 

FPGA design skills. Both novice and seasoned logic and hardware engineers can find 

bits of useful information in this book. It is intended to augment, not replace, existing 

FPGA documentation, such as user manuals, datasheets, and user guides. It provides 

useful and practical design ‚tips and tricks,‛ and little known facts that are hard to find 

elsewhere. 

The book is intended to be very practical with a lot of illustrations, code examples and 

scripts. Rather than having a generic discussion applicable to all FPGA vendors, this 

edition of the book focuses on Xilinx FPGAs. Code examples are written in Verilog 

HDL. This will enable more concrete examples and in-depth discussions. Most of the 

examples are simple enough, and can be easily ported to other FPGA vendors and 

families, and VHDL language. 

The book provides an extensive collection of useful online references. 

It is assumed that the reader has some digital design background, and working 

knowledge of ASIC or FPGA logic design using Verilog HDL.  

 

 

How to read this book 
 

The book is organized as a collection of short articles, or Tips, on various aspects of 

FPGA design: synthesis, simulation, porting ASIC designs, floorplanning and timing 

closure, design methodologies, design optimizations, RTL coding, IP core selection, and 

many others.  

This book is intended for both referencing and browsing. The Tips are organized by 

topic, such as ‚Efficient use of Xilinx FPGA design tools,‛ but it is not arranged in a 

perfect order. There is little dependency between Tips. The reader is not expected to 

read the book from cover to cover. Instead, you can browse to the topic that interests 

you at any time.  

This book is not a definitive guide into Verilog programming language, digital design or 

FPGA tools and architecture. Neither does it attempt to provide deep coverage of a wide 
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range of topics in a limited space. Instead, it covers the important points, and provides 

references for further exploration of that topic. Some of the material in this book has 

appeared previously as more complete articles in technical magazines. 

 

Software 

 

The FPGA synthesis and simulation software used in this book is a free Web edition of 

Xilinx ISE package. 

 

Companion web site 

 
An accompanying web site for this book is: 

http://outputlogic.com/100_fpga_power_tips 

It provides most of the projects, source code, and scripts mentioned in the book. It also 

contains links to referenced materials, and errata. 

 

 

 

http://outputlogic.com/100_fpga_power_tips
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4. FPGA Architecture 

The key to successful design is a good understanding of the underlying FPGA 

architecture, capabilities, available resources, and just as important - the limitations. 

This Tip uses Xilinx Virtex-6 family as an example to provide a brief overview of the 

architecture of a modern FPGA.  

The main architectural components, as illustrated in the following figure, are logic and 

IO blocks, interconnect matrices, clocking resources, embedded memories, routing, and 

configuration logic.  

 

 

Figure 1: FPGA architecture 

Many high-end FPGAs also include complex functional modules such as memory 

controllers, high speed serializer/deserializer transceivers, integrated PCI Express 

interface, and Ethernet MAC blocks.  

The combination of FPGA logic and routing resources is frequently called FPGA fabric. 

The term derives its name from its topological representation. As the routing between 

logic blocks and other resources is drawn out, the lines cross so densely that it resembles 

a fabric. 
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Logic blocks 

Logic block is a generic term for a circuit that implements various logic functions. A 

logic block in Xilinx FPGAs is called Slice. A Slice in Virtex-6 FPGA contains four look-

up tables (LUTs), eight registers, a carry chain, and multiplexers. The following figure 

shows main components of a Virtex-6 FPGA Slice. 

 

 

Figure 2: Xilinx Virtex-6 FPGA Slice structure 

The connectivity between LUTs, registers, multiplexers, and a carry chain can be 

configured to form different logic circuits. 

There are two different Slice types: SLICEM and SLICEL. A SLICEM has a multi-

purpose LUT, which can also be configured as a Shift Register LUT (SRL), or a 64- or 32-

bit read-only or random access memory. 

Each Slice register can be configured as a latch. 

 

Clocking resources 

Each Virtex-6 FPGA provides several highly configurable mixed-mode clock managers 

(MMCMs), which are used for frequency synthesis and phase shifting. 

Clocks to different synchronous elements across FPGA are distributed using dedicated 

low-skew and low-delay clock routing resources. Clock lines can be driven by global 

clock buffers, which allow glitchless clock multiplexing and the clock enable. 

More detailed discussion of Xilinx FPGA clocking resources is provided in Tip #20. 
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Embedded memory 

Xilinx FPGAs have two types of embedded memories: a dedicated Block RAM (BRAM) 

primitive, and a LUT configured as Distributed RAM 

Virtex-6 BRAM can store 36K bits, and can be configured as a single- or dual-ported 

RAM. Other configuration options include data width of up to 36-bit, memory depth up 

to 32K entries, and error detection and correction.  

Tip #34 describes different use cases of FPGA-embedded memory. 

 

DSP 

Virtex-6 FPGAs provide dedicated Digital Signal Processing (DSP) primitives to 

implement various functions used in DSP applications, such as multipliers, 

accumulators, and signed arithmetic operations. The main advantage of using DSP 

primitives instead of general-purpose LUTs and registers is high performance.  

Tip #28 describes different use cases of DSP primitive. 

 

Input/Output 

Input/Output (IO) block enables different IO pin configurations: IO standards, single-

ended or differential, slew rate and the output strength, pull-up or pull-down resistor, 

digitally controlled impedance (DCI). An IO in Virtex-6 can be delayed by up to 32 

increments of 78 ps each by using an IODELAY primitive.  

 

Serializer/Deserializer 

Most of Virtex-6 FPGAs include dedicated transceiver blocks that implement 

Serializer/Deserializer (SerDes) circuits. Transceivers can operate at a data rate between 

155 Mb/s and 11.18 Gb/s, depending on the configuration. 

 

Routing resources 

FPGA routing resources provide programmable connectivity between logic blocks, IOs, 

embedded memory, DSP, and other modules. Routing resources are arranged in a 

horizontal and vertical grid. A special interconnect module serves as a configurable 

switch box to connect logic blocks, IOs, DSP, and other module to horizontal and 

vertical routing. Unfortunately, Xilinx doesn’t provide much documentation on 

performance characteristics, implementation details, and quantity of the routing 

resources. Some routing performance characteristics can be obtained by analyzing 

timing reports. And the FPGA Editor tool can be used to glean information about the 

routing quantity and structure. 
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FPGA configuration 

The majority of modern FPGAs are SRAM-based, including Xilinx Spartan and Virtex 

families. On each FPGA power-up, or during a subsequent FPGA reconfiguration, a 

bitstream is read from the external non-volatile memory (NVM), processed by the 

configuration controller, and loaded to the internal configuration SRAM. Tips #35-37 

describe the process of FPGA configuration and bitstream structure in more detail.  

The following table summarizes this Tip by showing key features of the smallest, mid-

range, and largest Xilinx Virtex-6 FPGA. 

 

Table 1: Xilinx Virtex-6 FPGA key features 

 XC6VLX75T  XC6VLX240T XC6VLX760 

Logic cells 74,496 241,152 758,784 

Embedded memory (Kbyte) 832 2,328 4,275 

DSP modules 288 768 864 

User IOs 240 600 1200 
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22. Clock Domain Crossing 

Most FPGA designs utilize more than one clock. An example of a multi-clock design is 

illustrated in the following figure. 
 

 

Figure 1: An example of a multi-clock design 

The design implements a PCI Express to Ethernet adapter and is shown to illustrate the 

potential complexity of a clocking scheme. It has a 16-lane PCI Express, tri-mode 

Ethernet, DDR3 memory controller, and the bridge logic. 16 Serializer/Deserializer 

(SerDes) modules embedded in FPGA are used to receive PCI Express data, one for each 

lane. Each SerDes outputs a recovered clock synchronized to the data. A shared clock is 

used for all PCI Express transmit lanes. Tri-mode Ethernet MAC requires 2.5MHz, 25 

MHz, and 125MHz clocks to operate at 10Mbs, 100Mbs, or 1Gbs speed, respectively. 

The memory controller uses a 333MHz clock, and the bridge logic utilizes a 200MHz 

clock. In total, there are 23 clocks in the design. Each clock domain crossing – from PCI 

Express to bridge, bridge to Ethernet, and bridge to memory controller – requires using 

a different technique to ensure reliable operation of the design. 

 

Metastability 
 

Metastability is the main design problem to be considered for implementing data 

transmission between different clock domains. 

Metastability is defined as a transitory state of a register which is neither logic ‘0’ nor 

logic ‘1’. A register might enter a metastable state if the setup and hold timing 

requirements are not met. In a metastable state a register is set to an intermediate 

voltage level, which is neither a ‚zero‛ nor a ‚one‛ logic state. Small voltage and 

temperature perturbations can return the register to a valid state. The transition time 

and resulting logic level are indeterminate. In some cases, the register output can 
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oscillate between the two valid states. Metastability conditions arise in designs with 

multiple clocks, or asynchronous inputs, and result in data corruption. 

The following are some of the circuit examples that can cause metastability. 

 

Example 1 

 

A state machine may enter an illegal state if some of the inputs to the next state logic are 

driven by a register in a different clock domain. This is illustrated in the following 

figure. 

 

 

Figure 2: State machine enters an incorrect state 

The exact problem that may occur due to metastability depends on the state machine 

implementation. If the state machine is implemented as one-hot – that is, there is exactly 

one register for each state – then the state machine may transition to a valid, but 

incorrect, state.  

 

 

Example 2 

 

An input data to a Xilinx BRAM primitive and the BRAM itself are in different clock 

domains. 

 

 

Figure 3: BRAM and its inputs are in different clock domains 
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If the input data violates the setup of hold requirements of a BRAM, that may result in 

data corruption. The same applies to other BRAM inputs, such as address and write 

enable.   

 

Example 3 

 

The output of a register in one clock domain is used as a synchronous reset to a register 

in another clock domain. The data output of the right register, shown in the figure 

below, can be corrupted. 

 

 

Figure 4: Metastability due to synchronous reset 

 

 

Example 4 

 

Data coherency problem may occur when a data bus is sampled by registers in different 

clock domains. This case is illustrated in the following figure. 
 

 

Figure 5: Data coherency 

 

There is no guarantee that all the data outputs will be valid in the same clock. It might 

take several clocks for all the bits to settle. 

 

Calculating Mean Time Between Failure (MTBF) 
 

Using metastable signals can cause intermittent logic errors. Mean time between failure, 

or MTBF, is a metric that provides an estimate of the average time interval between two 

successive failures of a specific synchronous element. Synchronization circuits, such as 

using the two registers described in Tip #23, help increase the MTBF and reduce the 

probability of en error to practical levels, but they do not completely eliminate it. 
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There are several practical methods for measuring the metastability capture window 

described in the literature. The one applicable to Xilinx FPGA is Xilinx Application Note 

XAPP094 [1]. 

However, MTBF can be only determined using statistical methods. A commonly used 

MTBF equation is: 

 

 
 

f1 and f2 are the frequencies of two clock domains. 

The product T*τ in the exponent describes the speed with which the metastable 

condition is resolved. 

To is the duration of a critical time window during which the synchronous element is 

likely to become metastable. 

To , T, and τ are circuit specific. 

 

As an example, for f1=1MHz, f2=1KHz, T0=30ps, T*τ = 10,  

MTBF = exp(10)/(1MHz * 1KHz * 30ps) = 734,216 sec = 204 hours. 

 

 

Clock Domain Crossing (CDC) analysis 
 

In complex multi-clock designs, the task of correctly detecting and verifying all clock 

domain crossing is not simple. Design problems due to CDC are typically not detected 

in a functional simulation. Unfortunately, there are only a few adequate tools from the 

functionality and cost perspective that perform automatic identification and verification 

of the CDC schemes used in FPGA designs. 

Mentor Graphics Questa software provides a comprehensive CDC verification solution, 

including RTL analysis, identification of all clocks and clock domain crossings, and 

generation of assertions and metastability models.  

The Xilinx XST synthesis tool provides a -cross_clock_analysis option to 

perform inter-clock domain analysis during timing optimization.  

 

Resources 
[1] Metastable Recovery in Virtex-II FPGAs, Xilinx Application Note XAPP094 

http://www.xilinx.com/support/documentation/application_notes/xapp094.pdf 
 

 

 


