

Copyright © 2011 Evgeni Stavinov

Copyright © 2011 Evgeni Stavinov

 3

Preface

I have never thought of myself as a book writer. Over the course of my career, I have

written volumes of technical documentation, published several articles in technical

magazines, and have done a lot of technical blogging. At some point, I have

accumulated a wealth of experience and knowledge in the area of FPGA design, and

thought it was a good time to share it with a broader audience.

Writing a book takes time, commitment, and discipline. It also requires a very different

skill set. Unfortunately, many engineers, including myself, are trained to use

programming languages better than natural languages. Despite all that, writing a book

is definitely an intellectually rewarding experience.

I would like to express my gratitude to all the people who have provided valuable ideas,

reviewed technical contents, and edited the manuscript: my colleagues from SerialTek,

former colleagues from Xilinx, technical bloggers, and many others.

About the author

Evgeni Stavinov is a longtime FPGA user with more than 10 years of diverse design

experience. Before becoming a hardware architect at SerialTek LLC, he held different

engineering positions at Xilinx, LeCroy and CATC. Evgeni holds MS and BS degrees in

electrical engineering from University of Southern California and Technion - Israel

Institute of Technology. Evgeni is a creator of OutputLogic.com, a portal that offers

different online productivity tools.

Table of Contents

1. Introduction 9

2. FPGA Landscape 11

3. FPGA Applications 14

4. FPGA Architecture 17

5. FPGA Project Tasks 22

6. Overview of FPGA design tools 30

Copyright © 2011 Evgeni Stavinov

7. Xilinx FPGA Build Process 35

8. Using Xilinx tools in command-line mode 40

9. Xilinx Environment Variables 49

10. Xilinx ISE Tool Versioning 53

11. Lesser known Xilinx Tools 54

12. Understanding Xilinx Tool Reports 57

13. Naming Conventions 62

14. Verilog Coding Style 72

15. Writing Synthesizable Code for FPGAs 81

16. Instantiation vs. Inference 91

17. Mixed use of Verilog and VHDL 97

18. Verilog versions: Verilog-95, Verilog-2001, and SystemVerilog 100

19. HDL Code Editors 110

20. FPGA Clocking Resources 113

21. Designing a Clocking Scheme 120

22. Clock Domain Crossing 126

23. Clock Synchronization Circuits 131

24. Using FIFOs 139

25. Counters 145

26. Signed Arithmetic 152

27. State machines 156

28. Using Xilinx DSP48 primitive 161

 5

29. Reset Scheme 168

30. Designing Shift Registers 178

31. Interfacing to external devices 182

32. Using look-up tables and carry chains 188

33. Designing Pipelines 191

34. Using Embedded Memory 198

35. Understanding FPGA Bitstream Structure 207

36. FPGA Configuration 212

37. FPGA Reconfiguration 218

38. Estimating Design Size 222

39. Estimating Design Speed 230

40. Estimating FPGA Power Consumption 233

41. Pin Assignment 238

42. Thermal Analysis 242

43. FPGA Cost Estimate 247

44. GPGPU vs. FPGA 250

45. ASIC to FPGA Migration tasks 253

46. Differences Between ASIC and FPGA Designs 258

47. Selecting ASIC Emulation or Prototyping Platform 261

48. Partitioning an ASIC design into multiple FPGAs 269

49. Porting Clocks 277

50. Porting Latches 280

Copyright © 2011 Evgeni Stavinov

51. Porting combinatorial circuits 283

52. Porting non-synthesizable circuits 287

53. Modeling memories 293

54. Porting tri-state logic 296

55. Verification of a Ported Design 300

56. FPGA Design Verification 304

57. Simulation Types 310

58. Improving Simulation Performance 315

59. Simulation and Synthesis Results Mismatch 322

60. Simulator Selection 325

61. Overview of Commercial and Open-source Simulators 329

62. Designing Simulation Testbenches 332

63. Simulation Best Practices 335

64. Measuring Simulation Performance 343

65. Overview of FPGA-based Processors 346

66. Ethernet Cores 351

67. Designing Network Applications 355

68. IP Core Selection 362

69. IP Core Protection 368

70. IP Core interfaces 372

71. Serial and parallel CRC 377

72. Scramblers, PRBS, and MISR 388

 7

73. Security Cores 392

74. Memory Controllers 396

75. USB Cores 404

76. PCI Express Cores 409

77. Miscellaneous IP Cores and Functional Blocks 414

78. Improving FPGA Build Time 417

79. Design Area Optimizations: Tool Options 422

80. Design Area Optimizations: Coding Style 428

81. Design Power Optimizations 435

82. Bringing-up an FPGA design 439

83. PCB instrumentation 443

84. Protocol Analyzers and Exercisers 448

85. Troubleshooting FPGA Configuration 450

86. Using ChipScope 455

87. Using FPGA Editor 462

88. Using Xilinx SystemMonitor 468

89. FPGA Failure Analysis 471

90. Timing Constraints 474

91. Performing Timing Analysis 478

92. Timing Closure Flows 485

93. Timing Closure: Tool Options 489

94. Timing Closure: Constraints and Coding Style 494

Copyright © 2011 Evgeni Stavinov

95. The Art of FPGA Floorplanning 498

96. Floorplanning Memories and FIFOs 510

97. Build Management and Continuous Integration 520

98. Verilog Processing and Build Flow Scripts 522

99. Report and Design Analysis Tools 524

100. Resources 526

Acronyms 529

Introduction Tips 1:5

Efficient use of Xilinx FPGA design tools Tips 6:12

Using Verilog HDL Tips 13:19

Design, Synthesis, and Physical Implementation Tips 20:37

FPGA selection Tips 38:44

Migrating from ASIC to FPGA Tips 45:55

Design Simulation and Verification Tips 56:64

IP Cores and Functional Blocks Tips 65:77

Design Optimizations Tips 78:81

FPGA Design Bring-up and Debug Tips 82:89

Floorplanning and Timing closure Tips 90:96

Third party productivity tools Tips 97:99

Resources Tip 100

 9

1. Introduction

Target audience

FPGA logic design has grown from being one of many hardware engineering skills a

decade ago to a highly specialized field. Nowadays, FPGA logic design is a full time job.

It requires a broad range of skills, such as a deep knowledge of FPGA design tools, the

ability to understand FPGA architecture and sound digital logic design practices. It can

take years of training and experience to master those skills in order to be able to design

complex FPGA projects.

This book is intended for electrical engineers and students who want to improve their

FPGA design skills. Both novice and seasoned logic and hardware engineers can find

bits of useful information in this book. It is intended to augment, not replace, existing

FPGA documentation, such as user manuals, datasheets, and user guides. It provides

useful and practical design ‚tips and tricks,‛ and little known facts that are hard to find

elsewhere.

The book is intended to be very practical with a lot of illustrations, code examples and

scripts. Rather than having a generic discussion applicable to all FPGA vendors, this

edition of the book focuses on Xilinx FPGAs. Code examples are written in Verilog

HDL. This will enable more concrete examples and in-depth discussions. Most of the

examples are simple enough, and can be easily ported to other FPGA vendors and

families, and VHDL language.

The book provides an extensive collection of useful online references.

It is assumed that the reader has some digital design background, and working

knowledge of ASIC or FPGA logic design using Verilog HDL.

How to read this book

The book is organized as a collection of short articles, or Tips, on various aspects of

FPGA design: synthesis, simulation, porting ASIC designs, floorplanning and timing

closure, design methodologies, design optimizations, RTL coding, IP core selection, and

many others.

This book is intended for both referencing and browsing. The Tips are organized by

topic, such as ‚Efficient use of Xilinx FPGA design tools,‛ but it is not arranged in a

perfect order. There is little dependency between Tips. The reader is not expected to

read the book from cover to cover. Instead, you can browse to the topic that interests

you at any time.

This book is not a definitive guide into Verilog programming language, digital design or

FPGA tools and architecture. Neither does it attempt to provide deep coverage of a wide

Copyright © 2011 Evgeni Stavinov

range of topics in a limited space. Instead, it covers the important points, and provides

references for further exploration of that topic. Some of the material in this book has

appeared previously as more complete articles in technical magazines.

Software

The FPGA synthesis and simulation software used in this book is a free Web edition of

Xilinx ISE package.

Companion web site

An accompanying web site for this book is:

http://outputlogic.com/100_fpga_power_tips

It provides most of the projects, source code, and scripts mentioned in the book. It also

contains links to referenced materials, and errata.

http://outputlogic.com/100_fpga_power_tips

 11

4. FPGA Architecture

The key to successful design is a good understanding of the underlying FPGA

architecture, capabilities, available resources, and just as important - the limitations.

This Tip uses Xilinx Virtex-6 family as an example to provide a brief overview of the

architecture of a modern FPGA.

The main architectural components, as illustrated in the following figure, are logic and

IO blocks, interconnect matrices, clocking resources, embedded memories, routing, and

configuration logic.

Figure 1: FPGA architecture

Many high-end FPGAs also include complex functional modules such as memory

controllers, high speed serializer/deserializer transceivers, integrated PCI Express

interface, and Ethernet MAC blocks.

The combination of FPGA logic and routing resources is frequently called FPGA fabric.

The term derives its name from its topological representation. As the routing between

logic blocks and other resources is drawn out, the lines cross so densely that it resembles

a fabric.

Copyright © 2011 Evgeni Stavinov

Logic blocks

Logic block is a generic term for a circuit that implements various logic functions. A

logic block in Xilinx FPGAs is called Slice. A Slice in Virtex-6 FPGA contains four look-

up tables (LUTs), eight registers, a carry chain, and multiplexers. The following figure

shows main components of a Virtex-6 FPGA Slice.

Figure 2: Xilinx Virtex-6 FPGA Slice structure

The connectivity between LUTs, registers, multiplexers, and a carry chain can be

configured to form different logic circuits.

There are two different Slice types: SLICEM and SLICEL. A SLICEM has a multi-

purpose LUT, which can also be configured as a Shift Register LUT (SRL), or a 64- or 32-

bit read-only or random access memory.

Each Slice register can be configured as a latch.

Clocking resources

Each Virtex-6 FPGA provides several highly configurable mixed-mode clock managers

(MMCMs), which are used for frequency synthesis and phase shifting.

Clocks to different synchronous elements across FPGA are distributed using dedicated

low-skew and low-delay clock routing resources. Clock lines can be driven by global

clock buffers, which allow glitchless clock multiplexing and the clock enable.

More detailed discussion of Xilinx FPGA clocking resources is provided in Tip #20.

 13

Embedded memory

Xilinx FPGAs have two types of embedded memories: a dedicated Block RAM (BRAM)

primitive, and a LUT configured as Distributed RAM

Virtex-6 BRAM can store 36K bits, and can be configured as a single- or dual-ported

RAM. Other configuration options include data width of up to 36-bit, memory depth up

to 32K entries, and error detection and correction.

Tip #34 describes different use cases of FPGA-embedded memory.

DSP

Virtex-6 FPGAs provide dedicated Digital Signal Processing (DSP) primitives to

implement various functions used in DSP applications, such as multipliers,

accumulators, and signed arithmetic operations. The main advantage of using DSP

primitives instead of general-purpose LUTs and registers is high performance.

Tip #28 describes different use cases of DSP primitive.

Input/Output

Input/Output (IO) block enables different IO pin configurations: IO standards, single-

ended or differential, slew rate and the output strength, pull-up or pull-down resistor,

digitally controlled impedance (DCI). An IO in Virtex-6 can be delayed by up to 32

increments of 78 ps each by using an IODELAY primitive.

Serializer/Deserializer

Most of Virtex-6 FPGAs include dedicated transceiver blocks that implement

Serializer/Deserializer (SerDes) circuits. Transceivers can operate at a data rate between

155 Mb/s and 11.18 Gb/s, depending on the configuration.

Routing resources

FPGA routing resources provide programmable connectivity between logic blocks, IOs,

embedded memory, DSP, and other modules. Routing resources are arranged in a

horizontal and vertical grid. A special interconnect module serves as a configurable

switch box to connect logic blocks, IOs, DSP, and other module to horizontal and

vertical routing. Unfortunately, Xilinx doesn’t provide much documentation on

performance characteristics, implementation details, and quantity of the routing

resources. Some routing performance characteristics can be obtained by analyzing

timing reports. And the FPGA Editor tool can be used to glean information about the

routing quantity and structure.

Copyright © 2011 Evgeni Stavinov

FPGA configuration

The majority of modern FPGAs are SRAM-based, including Xilinx Spartan and Virtex

families. On each FPGA power-up, or during a subsequent FPGA reconfiguration, a

bitstream is read from the external non-volatile memory (NVM), processed by the

configuration controller, and loaded to the internal configuration SRAM. Tips #35-37

describe the process of FPGA configuration and bitstream structure in more detail.

The following table summarizes this Tip by showing key features of the smallest, mid-

range, and largest Xilinx Virtex-6 FPGA.

Table 1: Xilinx Virtex-6 FPGA key features

 XC6VLX75T XC6VLX240T XC6VLX760

Logic cells 74,496 241,152 758,784

Embedded memory (Kbyte) 832 2,328 4,275

DSP modules 288 768 864

User IOs 240 600 1200

 15

22. Clock Domain Crossing

Most FPGA designs utilize more than one clock. An example of a multi-clock design is

illustrated in the following figure.

Figure 1: An example of a multi-clock design

The design implements a PCI Express to Ethernet adapter and is shown to illustrate the

potential complexity of a clocking scheme. It has a 16-lane PCI Express, tri-mode

Ethernet, DDR3 memory controller, and the bridge logic. 16 Serializer/Deserializer

(SerDes) modules embedded in FPGA are used to receive PCI Express data, one for each

lane. Each SerDes outputs a recovered clock synchronized to the data. A shared clock is

used for all PCI Express transmit lanes. Tri-mode Ethernet MAC requires 2.5MHz, 25

MHz, and 125MHz clocks to operate at 10Mbs, 100Mbs, or 1Gbs speed, respectively.

The memory controller uses a 333MHz clock, and the bridge logic utilizes a 200MHz

clock. In total, there are 23 clocks in the design. Each clock domain crossing – from PCI

Express to bridge, bridge to Ethernet, and bridge to memory controller – requires using

a different technique to ensure reliable operation of the design.

Metastability

Metastability is the main design problem to be considered for implementing data

transmission between different clock domains.

Metastability is defined as a transitory state of a register which is neither logic ‘0’ nor

logic ‘1’. A register might enter a metastable state if the setup and hold timing

requirements are not met. In a metastable state a register is set to an intermediate

voltage level, which is neither a ‚zero‛ nor a ‚one‛ logic state. Small voltage and

temperature perturbations can return the register to a valid state. The transition time

and resulting logic level are indeterminate. In some cases, the register output can

Copyright © 2011 Evgeni Stavinov

oscillate between the two valid states. Metastability conditions arise in designs with

multiple clocks, or asynchronous inputs, and result in data corruption.

The following are some of the circuit examples that can cause metastability.

Example 1

A state machine may enter an illegal state if some of the inputs to the next state logic are

driven by a register in a different clock domain. This is illustrated in the following

figure.

Figure 2: State machine enters an incorrect state

The exact problem that may occur due to metastability depends on the state machine

implementation. If the state machine is implemented as one-hot – that is, there is exactly

one register for each state – then the state machine may transition to a valid, but

incorrect, state.

Example 2

An input data to a Xilinx BRAM primitive and the BRAM itself are in different clock

domains.

Figure 3: BRAM and its inputs are in different clock domains

 17

If the input data violates the setup of hold requirements of a BRAM, that may result in

data corruption. The same applies to other BRAM inputs, such as address and write

enable.

Example 3

The output of a register in one clock domain is used as a synchronous reset to a register

in another clock domain. The data output of the right register, shown in the figure

below, can be corrupted.

Figure 4: Metastability due to synchronous reset

Example 4

Data coherency problem may occur when a data bus is sampled by registers in different

clock domains. This case is illustrated in the following figure.

Figure 5: Data coherency

There is no guarantee that all the data outputs will be valid in the same clock. It might

take several clocks for all the bits to settle.

Calculating Mean Time Between Failure (MTBF)

Using metastable signals can cause intermittent logic errors. Mean time between failure,

or MTBF, is a metric that provides an estimate of the average time interval between two

successive failures of a specific synchronous element. Synchronization circuits, such as

using the two registers described in Tip #23, help increase the MTBF and reduce the

probability of en error to practical levels, but they do not completely eliminate it.

Copyright © 2011 Evgeni Stavinov

There are several practical methods for measuring the metastability capture window

described in the literature. The one applicable to Xilinx FPGA is Xilinx Application Note

XAPP094 [1].

However, MTBF can be only determined using statistical methods. A commonly used

MTBF equation is:

f1 and f2 are the frequencies of two clock domains.

The product T*τ in the exponent describes the speed with which the metastable

condition is resolved.

To is the duration of a critical time window during which the synchronous element is

likely to become metastable.

To , T, and τ are circuit specific.

As an example, for f1=1MHz, f2=1KHz, T0=30ps, T*τ = 10,

MTBF = exp(10)/(1MHz * 1KHz * 30ps) = 734,216 sec = 204 hours.

Clock Domain Crossing (CDC) analysis

In complex multi-clock designs, the task of correctly detecting and verifying all clock

domain crossing is not simple. Design problems due to CDC are typically not detected

in a functional simulation. Unfortunately, there are only a few adequate tools from the

functionality and cost perspective that perform automatic identification and verification

of the CDC schemes used in FPGA designs.

Mentor Graphics Questa software provides a comprehensive CDC verification solution,

including RTL analysis, identification of all clocks and clock domain crossings, and

generation of assertions and metastability models.

The Xilinx XST synthesis tool provides a -cross_clock_analysis option to

perform inter-clock domain analysis during timing optimization.

Resources
[1] Metastable Recovery in Virtex-II FPGAs, Xilinx Application Note XAPP094

http://www.xilinx.com/support/documentation/application_notes/xapp094.pdf

